Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2782: 159-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622400

RESUMO

Regulatory B (Breg) cells have been demonstrated to play an important role in the inhibition of a wide range of immunological responses, and they are absent or malfunction in autoimmune diseases like lupus. Breg cells can control immunological responses and keep the immune system in a balanced state by releasing immunosuppressive cytokines such as transforming growth factor-beta (TGF-ß) and interleukin-10 (IL-10), which in turn promote regulatory T (Treg) cells and reduce effector T cell responses. Breg cells have also been linked to the modulation of cancer immunity. Due to their immunosuppressive role, in the context of cancer, Breg cells aid in tumor immune evasion and promote tumor progression. Nonetheless, it has been established that Breg cells are involved in both cancer immunity and autoimmunity, and their characterizations beyond surface markers, for example, on the transcriptomic level, are essential for our understanding of Breg biology in health and disease. In this chapter, using lupus-prone MRL/lpr mice, we describe a Breg cell isolation protocol for the purpose of single-cell RNA sequencing analysis.


Assuntos
Doenças Autoimunes , Linfócitos B Reguladores , Neoplasias , Animais , Camundongos , Camundongos Endogâmicos MRL lpr , Citocinas/metabolismo , Fator de Crescimento Transformador beta/genética , Linfócitos T Reguladores , Doenças Autoimunes/patologia , Neoplasias/patologia
2.
Front Immunol ; 15: 1359534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352866

RESUMO

Introduction: Leaky gut has been linked to autoimmune disorders including lupus. We previously reported upregulation of anti-flagellin antibodies in the blood of lupus patients and lupus-prone mice, which led to our hypothesis that a leaky gut drives lupus through bacterial flagellin-mediated activation of toll-like receptor 5 (TLR5). Methods: We created MRL/lpr mice with global Tlr5 deletion through CRISPR/Cas9 and investigated lupus-like disease in these mice. Result: Contrary to our hypothesis that the deletion of Tlr5 would attenuate lupus, our results showed exacerbation of lupus with Tlr5 deficiency in female MRL/lpr mice. Remarkably higher levels of proteinuria were observed in Tlr5 -/- MRL/lpr mice suggesting aggravated glomerulonephritis. Histopathological analysis confirmed this result, and Tlr5 deletion significantly increased the deposition of IgG and complement C3 in the glomeruli. In addition, Tlr5 deficiency significantly increased renal infiltration of Th17 and activated cDC1 cells. Splenomegaly and lymphadenopathy were also aggravated in Tlr5-/- MRL/lpr mice suggesting impact on lymphoproliferation. In the spleen, significant decreased frequencies of regulatory lymphocytes and increased germinal centers were observed with Tlr5 deletion. Notably, Tlr5 deficiency did not change host metabolism or the existing leaky gut; however, it significantly reshaped the fecal microbiota. Conclusion: Global deletion of Tlr5 exacerbates lupus-like disease in MRL/lpr mice. Future studies will elucidate the underlying mechanisms by which Tlr5 deficiency modulates host-microbiota interactions to exacerbate lupus.


Assuntos
Glomerulonefrite , Receptor 5 Toll-Like , Animais , Feminino , Humanos , Camundongos , Glomerulonefrite/patologia , Rim/patologia , Camundongos Endogâmicos MRL lpr , Proteinúria
3.
Front Immunol ; 14: 1282770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155972

RESUMO

Introduction: B cells can have both pathogenic and protective roles in autoimmune diseases, including systemic lupus erythematosus (SLE). Deficiencies in the number or immunosuppressive function of IL-10 producing regulatory B cells (Bregs) can cause exacerbated autoimmune inflammation. However, the exact role of Bregs in lupus pathogenesis has not been elucidated. Methods: We carried out gene expression analysis by scRNA-seq to characterize differences in splenic Breg subsets and molecular profiles through stages of disease progression in lupus-prone mice. Transcriptome-based changes in Bregs from mice with active disease were confirmed by phenotypic analysis. Results: We found that a loss of marginal zone (MZ) lineage Bregs, an increase in plasmablast/plasma cell (PB-PC) lineage Bregs, and overall increases in inflammatory gene signatures were characteristic of active disease as compared to Bregs from the pre-disease stage. However, the frequencies of both MZ Bregs and PB-PCs expressing IL-10 were significantly decreased in active-disease mice. Conclusion: Overall, we have identified changes to the repertoire and transcriptional landscape of Breg subsets associated with active disease that provide insights into the role of Bregs in lupus pathogenesis. These results could inform the design of Breg-targeted therapies and interventions to restore Breg suppressive function in autoimmunity.


Assuntos
Doenças Autoimunes , Linfócitos B Reguladores , Lúpus Eritematoso Sistêmico , Animais , Camundongos , Interleucina-10/genética , Interleucina-10/metabolismo , Lúpus Eritematoso Sistêmico/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA